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Abstract 

 

Through the application of Abel's summation by parts approach, it is demonstrated that two 

semi-finite forms of the quintuple product identity are comparable. 
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• INTRODUCTION 

The celebrated quintuple product identity states that [1, p. 82]: 

 
 

Here and throughout this note, we define the products of q-shifted factorials as usual by 

 
 
for n ∈ Z and |q| < 1, with the following abbreviated multiple parameter 

notation (a, b, · · · , c; q)k = (a; q)k(b; q)k · · · (c; q)k, k 

∈ Z 𝖴 {∞}. 

For the historical remark and numerous proofs of this significant identity (1.1), the reader can 

consult the study [5]. Liu [6] provided a strong generalisation of (1.1) along with certain 

applications. 

Two of the three semi-finite forms of the quintuple product identity provided by the author 

and Zhang [7, 8] are expressed in the ensuing two theorems, respectively. 

Theorem 1. ([7, 8]) It has holds 
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Theorem 1.2. ( [8]) There holds 

 

 
We direct the reader to [7] and [8], respectively, for the technicalities of deriving the 
quintuple product identity (1.1) from Theorem 1.1 and 1.2. 

Using Abel's summing by parts method, we shall demonstrate in this brief note that Theorem 
1.2 is equal to Theorem 1.1. 

When assessing finite and infinite summations, the modified version of Abel's lemma on 

summation by parts works incredibly well. See, for example, [2-4]. This approach is limited 

to the situation where the series is unilateral and nonterminating, as indicated by the lemma 

that follows. 

For an arbitrary complex sequence {Ak}, let 

▽Ak  := Ak  − Ak−1 and △· Ak  := Ak  

− Ak+1. Lemma 1.3. Let {Ak} and {Bk} be two complex sequences. 

Then we have 

 
provided that the series on both sides are convergent and there exists 

the limit [AB]+ := limk→∞ Ak Bk+1. 

 
• THE EQUIVALENCE of THEOREM 1.1 AND 1.2 

 

Let 
 

 

 
And 
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Define 

 
 
 

Then, we have 

 

 

With the differences 

 

 

 

 

And 

 

 

 

Using Lemma 1.3, we get 

  

 

 
A−1B0 = [AB]+ = 0 
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• From Theorem 1.2 to Theorem 1.1. Combining (2.1) and Theorem 1.2, we get 

 
 
Then, replacing z with zq−1 gives the identity (1.2), which completes the proof of Theorem 
1.1. 

 

• From Theorem 1.1 to Theorem 1.2. Using (2.1) and Theorem 1.1, we have 
 

f (z) = (1 − z2q)g(qz) = (1 − z2q)(−zq; q)∞(z2q3; q2)∞ = (−zq; q)∞(z2q; q2)∞, which is 

the identity (1.3). This ends the proof of Theorem 1.2. 
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